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Amblyopia is a visual disorder due to an abnormal pattern of functional connectivity of
the visual cortex and characterized by several visual deficits of spatial vision including
impairments of visual acuity (VA) and of the contrast sensitivity function (CSF). Despite
being a developmental disorder caused by reduced visual stimulation during early life
(critical period), several studies have shown that extensive visual perceptual training can
improve VA and CSF in people with amblyopia even in adulthood. With the present study
we assessed whether a much shorter perceptual training regime, in association with high-
frequency transcranial electrical stimulation (hf-tRNS), was able to improve visual functions
in a group of adult participants with amblyopia. Results show that, in comparison with
previous studies where a large number sessions with a similar training regime were used
(Polat et al., 2004), here just eight sessions of training in contrast detection under lateral
masking conditions combined with hf-tRNS, were able to substantially improveVA and CSF
in adults with amblyopia.
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INTRODUCTION
Amblyopia, sometimes referred to as “lazy eye,” is a developmental
visual disorder characterized by several functional impairments in
spatial vision (even with the best optical correction) in absence
of any organic defects of the eye besides the refractive ones
(Ciuffreda et al., 1991; McKee et al., 2003; Robaei et al., 2006).
Impairments range from a reduction of visual acuity (VA), con-
trast sensitivity function (CSF) and Vernier acuity, to abnormal
spatial interactions (Polat et al., 1997; Levi et al., 2002) or defi-
ciencies in stereopsis (Wallace et al., 2011). It is believed to be
due to an anomalous pattern of functional connectivity within
the primary visual cortex, in particular of neurons selective
for orientation and spatial frequency (Polat, 1999), thus caus-
ing abnormal processing of visual information coming from
one or both eyes (but typically only one eye is involved). Until
recently, amblyopia was thought to be untreatable after the “crit-
ical period” spanning up to the first decade of life (Epelbaum
et al., 1993; Greenwald and Parks, 1999; Loudon et al., 2002),
due to diminished neural plasticity within the visual cortex that
would limit any anatomical, physiological or functional changes
(Berardi et al., 2003).

Numerous studies, however, have reported large and stimulus-
specific performance improvements (perceptual learning) in nor-
mal adults following training in various visual tasks (Fiorentini
and Berardi, 1980; Karni and Sagi, 1991; Poggio et al., 1992;
Schoups et al., 1995; see Sagi, 2011 for a review), pointing to neu-
ronal plasticity at early levels of the adult visual system (Schoups

et al., 2001; Pourtois et al., 2008). In fact, over the past 15 years,
marked improvements of various visual functions in adults with
amblyopia, following extensive sessions of perceptual learning,
have been reported (see Levi and Li, 2009 and Polat, 2009; Astle
et al., 2011a,b for recent reviews). Different authors used differ-
ent training tasks, ranging from Vernier acuity (Levi and Polat,
1996; Levi et al., 1997), stereo acuity (Astle et al., 2011a), to posi-
tion discrimination in noise (Li and Levi, 2004; Li et al., 2005,
2007), identification of luminance-defined letters in noise (Levi,
2005) or contrast-defined letters (Chung et al., 2006, 2008), con-
trast detection, either with Gabor stimuli or letters in isolation
(Zhou et al., 2006; Huang et al., 2008; Astle et al., 2011c), or when
Gabors were flanked by similar collinear patches (i.e., lateral mask-
ing; Polat et al., 2004). Analysing the amount of improvement
as a function of the task used in different studies, Levi and Li
(2009) pointed out that in most studies the ratio of improve-
ment between post- and pre-training contrast sensitivity (CS)
thresholds is between 0.4 and 0.8 for both VA and CSF. The
task that obtained the largest improvement ratio on both mea-
surements (∼0.35) was a contrast detection task using the lateral
masking procedure (Polat et al., 2004). Focusing on the abnor-
mal spatial interactions in amblyopia, Polat et al. (2004) used a
training procedure that allowed a strengthening of facilitatory lat-
eral interactions and a weakening of inhibitory lateral interactions
between detectors tuned to specific orientations and spatial fre-
quencies, thus obtaining a large and consistent improvement in
VA (78% gain, equal to 0.25 LogMAR improvement) and CSF
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(improvement ranging from 2.05 to 4.23 times) in adults with
amblyopia.

A drawback of this and similar training paradigms, however, is
their duration: the large number of sessions required to achieve
such improvements (from 30 to 80 sessions) could either prevent
amblyopic patients from starting the training or lead to a high
number of dropouts.

Recent studies have pointed out how non-invasive transcra-
nial brain stimulation techniques are able to boost percep-
tual learning in normal observers. In particular, it has been
shown that online transcranial electrical stimulation using ran-
dom frequencies in the high-frequency range (high-frequency
transcranial random noise stimulation, hf-tRNS), is the most
efficacious type of electrical stimulation for enhancing and accel-
erating within-session perceptual learning (Fertonani et al., 2011;
Pirulli et al., 2013).

In this study we assessed the extent of VA and CSF improvement
in a small sample (N = 7) of patients with anisometric amblyopia,
following a brief training (eight sessions) in contrast detection of
a central Gabor patch (target) flanked by two high contrast Gabor
patches of the same spatial frequency (i.e., lateral masking; Polat
et al., 2004), in conjunction with online hf-tRNS.

MATERIALS AND METHODS
PARTICIPANTS
Seven participants with anisometric amblyopia were recruited
at the San Paolo Ophthalmic Center of San Antonio Hospi-
tal (Padova, Italy) during routine ophthalmological assessment
(mean age of 39.20, ranging between 26 and 52). The partici-
pants were enrolled in a 2-week (eight sessions) behavioral training
program using a contrast detection task under lateral masking con-
ditions (Polat et al., 2004; Polat, 2009) combined with online high
frequency tRNS (hf-tRNS).

All pre/post tests were administered monocularly on either eye
and with the best optical correction. Perceptual training was also
administered monocularly on the amblyopic eye with the best
optical correction. Exclusion criteria included any other ocular
condition or cause for reduced VA other than amblyopia, myopia,
presbyopia, hypermetropia and/or astigmatism; these include
diabetes mellitus, pregnancy, presence of myopia-related ocular
complications and any previous ocular surgery. Exclusion criteria
also included incompatibility with transcranial electrical stimu-
lation, as assessed with a questionnaire (e.g., history of seizures,
skin problems, migraine, etc.). This study has been approved by
the local Ethics Committee.

EXPERIMENTAL PROCEDURE
Before (pre-tests) and after the training (with tRNS; post-tests), VA
and CSF were assessed for each participant by using, respectively,
Landolt C of the Freiburg Visual Acuity Test (FrACT, Bach, 1996),
and the CRS Psycho 2.36 test (Cambridge Research Systems Ltd,
Rochester, UK) from a viewing distance of 1.5 m.

Visual acuity was measured with an orientation discrimination
task (eight possible orientations of the gap of the Landolt C). The
Best-Pest adaptive procedure was used to calculate the threshold
corresponding to 62.5% of correct discrimination. Stimulus dura-
tion lasted until the participants’ response. An auditory cue was

presented upon stimulus presentation and a different auditory cue
was used as feedback for incorrect responses.

Contrast sensitivity was measured with the method of adjust-
ment by asking the participant to adjust the contrast of a vertical
sinusoidal grating covering the whole screen (21.3 × 16◦), with
four ascending (from lower to higher grating contrast) and four
descending (from higher to lower grating contrast) series. The
initial contrast on the first descending series was set according
to pilot experiments, ranging from −15 dB (17.78% contrast)
at intermediate spatial frequencies, to 0 dB (100% contrast) at
high spatial frequencies. On successive series the starting contrast
for each tested spatial frequency was set as the contrast thresh-
old obtained in the previous series, plus (in descending series) or
minus (in ascending series) a factor between 6 and 10 dB (ran-
domly selected). Increments/decrements were equal to 1 dB. The
resulting contrast threshold was the arithmetic mean of the last
selected contrast for each of the eight series, independently for
each spatial frequency. Each tested spatial frequency (ranging from
0.8 to 14.5 cpd) was presented sequentially starting from the lower
spatial frequency and progressively moving on to the higher spatial
frequencies; five different spatial frequencies were tested. For each
participant, CS at each tested spatial frequency was calculated by
averaging across series.

The behavioral training consisted of a two-interval forced
choice (2IFC) task where the participants had to detect the
presence of a central Gabor, which changed in contrast accord-
ing to the performance of the participant, surrounded by two
high-contrast (0.6 Michelson contrast) collinear Gabors (flankers;
Figure 1). Gabors were made of a cosinusoidal carrier enveloped
by a stationary Gaussian. Standard deviation of the luminance
Gaussian envelope (σ) was equal to the sinusoidal wavelength
(λ); that is, the size of the Gabor patches covaried with their
spatial frequency. Additionally, the spatial phase of the cosinu-
soidal carrier equalled to zero (evenly symmetric Gabor patch).
Center-to-center distance between target and flankers was var-
ied across blocks (1.5, 3, 4, and 8λ). On each session two
blocks were administered with the same center-to-center dis-
tance. The order of presentation always started with the largest
distance and ended with the smallest distance. Stimulus dura-
tion lasted 200 ms. Contrast threshold, corresponding to 79%
of correct responses, was determined by using a 1up/3down
staircase procedure on the last eight reversals (Levitt, 1971). Par-
ticipants underwent eight training sessions during 2 weeks (four
consecutive sessions per week), and trained on four different
orientations of the stimulus (that changed every 2 days) with
a single spatial frequency, chosen according to the individual’s
cut-off performance in the pre-test CS measurement, defined as
the spatial frequency at which the estimated contrast threshold
from pre-training CS measurements was 0.50 (Michelson con-
trast; Zhou et al., 2006). Trained spatial frequencies ranged from
3 to 15 cpd. Each session consisted of eight blocks each con-
taining 60 trials, which lasted for approximately 45 min. The
total training time for each participant, across the 2 weeks was
approximately 6 h.

Participants were administered hf-tRNS (1.5 mA) during the
first five blocks on each session (Fertonani et al., 2011). In order
to reduce spatial and temporal uncertainty both an auditory and a
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FIGURE 1 | Example of stimuli used in the training. The central Gabor
was the target varying in contrast according to a staircase. Flanking
Gabors had a fixed contrast of 0.6 Michelson contrast. The

target-to-flankers distance was varied across blocks (i.e., 1.5, 3, 4, and 8λ;
from left to right). The contrast of the target was increased for
demonstrative purposes.

spatial cue were implemented. On each trial a central fixation point
preceded the presentation of each interval. Performance feedback
was also provided to the participants in the form of an auditory
beep following an incorrect response.

The main differences between the training procedure used
in the present study with respect to that of Polat et al. (2004),
besides the use of online tRNS and a smaller number of ses-
sions, are: the use of a range of durations (80–320 ms) vs. a
fixed duration (200 ms) for stimulus presentation in our study;
the alternate use of target with or without flankers vs. a con-
stant use of flankers in our study; the use of an automated and
computerized decision-maker algorithm for deciding the param-
eters (spatial frequency, orientation) to be used in subsequent
sessions vs. a relatively fixed sequence of parameters in our
study.

APPARATUS
Training and VA tests were displayed on a 22-inch Philips Bril-
liance 202P4 monitor with a refresh rate of 60 Hz and a resolution
of 1280 × 1024 pixels. The monitor was luminance-calibrated
(gamma-corrected with γ = 1). The stimuli used in the train-
ing were generated with the Matlab Psychtoolbox (Brainard, 1997;
Pelli, 1997), whereas stimuli for measuring VA were generated
using the Freiburg Acuity and Contrast Test (FrACT 3.8, Bach,
1996). All stimuli were presented centrally. Viewing distance was
equal to 3 m for VA tests, whereas the training was adminis-
tered from 1.5 m. Background screen luminance (corresponding
to mean luminance of Gabor stimuli) was 31.5 cd/m2.

Contrast sensitivity tests were displayed on a 17-inch CRT mon-
itor (Brilliance 107P; Philips) with a refresh rate of 70 Hz and a
resolution of 1024 × 768 pixels. The monitor was luminance-
calibrates with γ = 1. The stimuli were generated with the CRS
Psycho 2.36 test (CRS Psycho 2.36; Cambridge Research Systems
Ltd, Rochester, UK) on a computer equipped with a 12-bit reso-
lution graphics card (Cambridge Research Systems Ltd VSG2/3).

Viewing distance was equal to 1.5 m. Background screen lumi-
nance (corresponding to mean luminance of the gratings) was
48.5 cd/m2. All tests and the training were carried out in a dark
and silent room.

tRNS
High frequency transcranial random noise stimulation was deliv-
ered using a battery-driven stimulator (BrainSTIM, EMS) through
a pair of saline-soaked sponge electrodes. The tRNS consisted of
an alternating current of 1.5 mA intensity with a 0 mA offset
applied at random frequencies. The frequencies ranged from 100
to 640 Hz.

The stimulations were applied for approximately 5 min
(equalling the duration of a training block) during each of the first
five training blocks (Fertonani et al., 2011); thus, the total dura-
tion of the stimulation was ∼25 min. This stimulation protocol
has been demonstrated efficacious in boosting perceptual learning
in previous studies (Fertonani et al., 2011; Pirulli et al., 2013). The
active electrode had an area of 16 cm2 and was placed over the
occipital cortex measured at ∼3 cm above the inion. The reference
electrode had an area of 60 cm2 and was placed on the forehead.
The current density was maintained well below the safety limits
(always below 1 A/m2; Poreisz et al., 2007). The electrodes were
kept in place with bandages.

RESULTS
Visual acuity and CS data were analyzed with a repeated measures
ANOVA with Time (pre- vs. post-test), and Spatial Frequency
(only for CS: 0.8, 2.9, 5.8, 9.7, and 14.5 cpd) as within-subjects fac-
tors, and Eye (amblyopic/trained vs. non-amblyopic/untrained)
as a between-subjects factor. When data violated the assumption
of sphericity, as assessed with the Mauchly’s test, we applied the
Greenhouse-Geisser correction of the degrees of freedom. Fol-
lowing eight sessions of a contrast detection training with lateral
masking, VA significantly improved in both trained and untrained
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eye (F1,12 = 35.4, p = 0.0001, η2
p = 0.75). The interaction between

Training Time and Eye was not significant (F1,12 = 2.47, p = 0.14,
η2

p = 0.17), indicating a similar improvement on both trained
and untrained eyes. Overall mean improvement was equal to 0.14
LogMAR, with a mean improvement close to 2 LogMAR lines
(0.18 LogMAR, corresponding to 50% improvement, that is from
0.35 LogMAR to 0.17 LogMAR), in the trained (amblyopic) eye,
and equal to 0.1 LogMAR, that is from 0 LogMAR to −0.1 Log-
MAR in the untrained eye (Figure 2). The VA in the trained
and untrained eye was also significantly different (F1,8 = 22.12,
p = 0.001, η2

p = 0.65).
Contrast sensitivity significantly improved after training

(F1,12 = 11.7, p = 0.005, η2
p = 0.49), regardless the eye (inter-

action Time by Eye: F1,12 = 0.03, p = 0.87, η2
p = 0.02; Figure 3).

As expected, there was also a large CS variation across the different
spatial frequencies tested (F1.5,18 = 29.7, p = 0.0001, η2

p = 0.71),
a significant difference in CS between the two eyes (F1,12 = 8.8,
p = 0.012, η2

p = 0.42), and a significant interaction Time by Spa-

tial Frequency (F4,48 = 2.7, p = 0.043, η2
p = 0.18), suggesting that

the CS improvement could have occurred only at certain spatial
frequencies.

In order to test this hypothesis, we performed further anal-
ysis separately for each spatial frequency. Repeated-measures
ANOVA with Training Time (pre- vs. post-test) as a within-
subject factor, and Eye (trained vs. untrained) as a between-
subjects factor showed a significant difference between pre- and
post-test at all tested spatial frequencies (0.8 cpd: F1,12 = 7,
p = 0.021, η2

p = 0.37; 2.9 cpd: F1,12 = 11.2, p = 0.006,

η2
p = 0.48; 5.8 cpd: F1,12 = 11.5, p = 0.005, η2

p = 0.49; 9.7

cpd: F1,128 = 5.8, p = 0.03, η2
p = 0.33; 14.5 cpd: F1,12 = 5.4,

p = 0.04, η2
p = 0.31), regardless the eye (interaction Time by

Eye was not significant in any of the tested spatial frequencies).
In terms of percentage improvement with respect to pre-test,
CS in the trained eye had nearly a twofold improvement (aver-
aged across participants and spatial frequencies), ranging from
74% at the lowest tested spatial frequency to 435% at the high-
est tested spatial frequency, whereas CS in the untrained eye

FIGURE 2 | Mean visual acuity before (Pre-test) and after (Post-test)

the lateral masking training with concurrent hf-tRNS, separately for

the trained amblyopic eye and the untrained fellow eye. Error bars
represent 1 SEM.

FIGURE 3 | Mean Log-CSF (average of the two eyes) before (Pre-test)

and after (Post-test) the lateral masking training with concurrent

hf-tRNS. Error bars represent ± 1 SEM.

had a mean CS improvement of 60% (averaged across partici-
pants and spatial frequencies), ranging from 21% at intermediate
spatial frequency (2.9 cpd) to 165% at the lowest tested spatial
frequency.

DISCUSSION
In our small sample of participants, a short (eight sessions) con-
trast detection training under lateral masking conditions and
concurrent hf-tRNS was able to increase mean VA by 0.18 Log-
MAR (53% improvement, ranging from 25 to 111%) in the trained
amblyopic eye. An improvement between 2 and 3 LogMAR lines
was achieved in four participants out of seven. This could be
considered a smaller improvement in comparison to the results
obtained by Polat et al. (2004), where a similar training procedure
was used, but with a training regime of 48 sessions on average
(VA increased by 0.25 LogMAR, 78% improvement). However, if
we compare our results with the improvement attained by Polat
et al. (2004) after eight sessions (0.13 LogMAR, 35% improve-
ment), and considering that in our study the mean best-corrected
VA reached 0.18 LogMAR (better than 6/9, the upper limit for
normal vision), we can state that a marked and clinically rele-
vant improvement in VA was obtained in a relatively short time
frame.

The CSF also resulted in strong improvements following train-
ing, both in the trained amblyopic eye and in the untrained fellow
eye. CSF in the trained amblyopic eye increased at all tested spa-
tial frequencies by a factor of 1.05, 0.74, 1.13, 1.35, and 3.21 for
spatial frequencies of 0.8, 2.9, 5.8, 9.7, and 14.5 cpd, respectively.
Compared with the results of Polat et al. (2004) obtained with
48 sessions of training (CSF improved by a factor of 2.21, 2.12,
2.93, 4.23, and 2.05 for spatial frequencies of 1.5, 3, 6, 12, and
18 cpd), we also see that for the CSF the improvement we esti-
mated appears smaller, although obtained this with 1/6th of the
total amount of sessions. Most importantly, the largest improve-
ment in our participants was at a similar high spatial frequency
(14.5 cpd) compared to the largest improvement obtained by Polat
et al. (2004, 12 cpd), and with a relatively similar improvement
factor (3.21 vs. 4.23). On the other hand, a smaller improve-
ment (by a factor of 2.05) was found by Polat et al. (2004) at 18
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cpd. Although it is still possible that the results obtained with
the present study with respect to that of Polat et al. (2004) were
due to the slightly different conditions used, besides the differ-
ent training duration and the use of tRNS (e.g., different target
durations, the use of a computerized decision-maker algorithm
to decide the parameters to be used in subsequent sessions), we
believe that the conditions used by Polat et al. (2004) could in fact
be more efficient in producing perceptual learning and transfer
to related and unrelated visual functions. For example, training
lateral interactions with a variable and faster stimulus presenta-
tion has been shown to improve not just CS but also processing
speed, thus increasing the “improvement of other functions that
are processed either at the same or at later stages” (Polat, 2009),
and the use of computerized decision-maker algorithms should
always supply the participant with the most effective stimulation
parameters.

Although the present study lacks a Sham group and therefore
the effects of tRNS cannot be isolated, the underlying mechanisms
as to how tRNS administered over the visual cortices could boost
learning of CS that would transfer onto unrelated tasks such as
VA. Being a sub-threshold stimulation, which is repetitive and
random in nature, whilst engaged in a contrast detection task,
tRNS could be inducing temporal summation of small depolariz-
ing currents that interact with the concurrent activity of cortical
neurons which are tuned to specific orientations and spatial fre-
quencies, thus enhancing performance on the task and inducing
synaptic potentiation (Fertonani et al., 2011). In fact, Pirulli et al.
(2013) showed that perceptual learning in a visual discrimina-
tion task only improved when the hf-tRNS was administered
during task execution (online stimulation), while no improve-
ment was found when it was administered with no concurrent
task (offline).

Taken together these data suggest that a short perceptual train-
ing combined with online hf-tRNS can induce brain plasticity and
can considerably improve visual functions in the amblyopic eye.
Further studies are needed to confirm the present results on a larger
sample of participants, and to estimate the best ratio between
extent of improvements of visual functions and duration of the
perceptual training combined with hf-tRNS. While the contribu-
tion of hf-tRNS on perceptual improvements has already been
shown both in participants with normal sight (Fertonani et al.,
2011; Pirulli et al., 2013) and in participants with uncorrected
myopia (Camilleri et al., 2014), future studies with sham controls
are needed to determine the precise contribution of hf-tRNS on
such improvements in amblyopia.
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